Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Endocr Metab Immune Disord Drug Targets ; 22(12): 1147-1148, 2022.
Article in English | MEDLINE | ID: covidwho-2257519
2.
Front Immunol ; 13: 945016, 2022.
Article in English | MEDLINE | ID: covidwho-2022724

ABSTRACT

Immune system is a versatile and dynamic body organ which offers survival and endurance of human beings in their hostile living environment. However, similar to other cells, immune cells are hijacked by senescence. The ageing immune cells lose their beneficial functions but continue to produce inflammatory mediators which draw other immune and non-immune cells to the senescence loop. Immunosenescence has been shown to be associated with different pathological conditions and diseases, among which atherosclerosis has recently come to light. There are common drivers of both immunosenescence and atherosclerosis; e.g. inflammation, reactive oxygen species (ROS), chronic viral infections, genomic damage, oxidized-LDL, hypertension, cigarette smoke, hyperglycaemia, and mitochondrial failure. Chronic viral infections induce inflammaging, sustained cytokine signaling, ROS generation and DNA damage which are associated with atherogenesis. Accumulating evidence shows that several DNA and RNA viruses are stimulators of immunosenescence and atherosclerosis in an interrelated network. DNA viruses such as CMV, EBV and HBV upregulate p16, p21 and p53 senescence-associated molecules; induce inflammaging, metabolic reprogramming of infected cells, replicative senescence and telomere shortening. RNA viruses such as HCV and HIV induce ROS generation, DNA damage, induction of senescence-associated secretory phenotype (SASP), metabolic reprogramming of infected cells, G1 cell cycle arrest, telomere shortening, as well as epigenetic modifications of DNA and histones. The newly emerged SARS-CoV-2 virus is also a potent inducer of cytokine storm and SASP. The spike protein of SARS-CoV-2 promotes senescence phenotype in endothelial cells by augmenting p16, p21, senescence-associated ß-galactosidase (SA-ß-Gal) and adhesion molecules expression. The impact of SARS-CoV-2 mega-inflammation on atherogenesis, however, remains to be investigated. In this review we focus on the common processes in immunosenescence and atherogenesis caused by chronic viral infections and discuss the current knowledge on this topic.


Subject(s)
Atherosclerosis , COVID-19 , Immunosenescence , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Humans , Inflammation/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2
3.
Cytokine Growth Factor Rev ; 58: 32-48, 2021 04.
Article in English | MEDLINE | ID: covidwho-1163617

ABSTRACT

The coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), appears with a wide spectrum of mild-to-critical clinical complications. Many clinical and experimental findings suggest the role of inflammatory mechanisms in the immunopathology of COVID-19. Hence, cellular and molecular mediators of the immune system can be potential targets for predicting, monitoring, and treating the progressive complications of COVID-19. In this review, we assess the latest cellular and molecular data on the immunopathology of COVID-19 according to the pathological evidence (e.g., mucus and surfactants), dysregulations of pro- and anti-inflammatory mediators (e.g., cytokines and chemokines), and impairments of innate and acquired immune system functions (e.g., mononuclear cells, neutrophils and antibodies). Furthermore, we determine the significance of immune biomarkers for predicting, monitoring, and treating the progressive complications of COVID-19. We also discuss the clinical importance of recent immune biomarkers in COVID-19, and at the end of each section, recent clinical trials in immune biomarkers for COVID-19 are mentioned.


Subject(s)
Biomarkers/blood , COVID-19/diagnosis , COVID-19/therapy , Immunity, Innate/physiology , Monitoring, Physiologic/methods , Biomarkers/analysis , COVID-19/blood , COVID-19/complications , Chemokines/analysis , Chemokines/blood , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Cytokines/analysis , Cytokines/blood , Humans , Prognosis , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL